Firejail Usage

Welcome to Firejail, a SUID security sandbox based on Linux namespaces and seccomp-bpf. We are a volunteer weekend project and our target is the desktop. Linux beginner or accomplished programmer, you are welcome to join us at http://github.com/netblue30/firejail.

This document is an effort to centralize Firejail information currently spread across several howtos, blogs and discussion threads. I’ll start with a short description of the kernel technologies involved, move to sandbox configuration and management, and explore some of the most common usage scenarios.

 

Contents

1. Technology
        1.1 The Linux Kernel
        1.2 What is SUID, and how does it affect me?

2. Usage and Configuration
        2.1 Installation
        2.2 Basic Usage
        2.3 Desktop Integration
        2.4 Security Profiles
        2.5 Managing Sandboxes

3. Filesystem
        3.1 Private Mode
        3.2 Chroot
        3.3 OverlayFS
        3.4 AppImage
        3.5 AppArmor
        3.6 EncFS and SSHFS

4. Networking
        4.1 Direct Network Setup
        4.2 Routed network Setup
        4.3 Traffic Shaping

5. X11 Sandboxing

6. Servers

 

1. Technology

There is nothing magic about the internal workings of a sandbox, just some kernel security technologies stack one on top of the other. As a user you don’t deal with them directly, Firejail takes care of it. We offer preconfigured security profiles for more than 400 Linux applications, and if your application is not among them, no problem – the default configuration should just work!

 

1.1. The Linux Kernel

All Firejail security features are implemented inside Linux kernel. The sandbox program configures the kernel and goes to sleep. The setup is very fast, usually tens of milliseconds. In very complicated setups it can go as high as 1 second. The memory requirements are low, all it needs is a few MB of memory. As for slowing down the application, I don’t think you’ll notice any.

We divide the kernel technologies used for sandboxing in three categories:

Front-end sandboxing technologies:

  • Mount namespace
  • PID namespace
  • Network namespace
  • Optional: chroot, overlayfs, netfilter
Back-end sandboxing technologies

  • seccomp-bpf
  • Linux capabilities
  • Optional: noroot user namespace, AppArmor
     
Kernel config technologies:

  • SUID

Front-end technologies are simple and very effective. They are designed to withstand a massive attack. We use mount, PID and network namespaces. The user can also request chroot, overlayfs and a netfilter firewall.

Back-end technologies are smart and sophisticated. They play a support role: to keep the front-end in place. Our main support technologies are seccomp and Linux capabilities. We use them to lock the attacker inside the sandbox, and prevent him from becoming root. If requested, we also start a noroot user namespace, and configure an AppArmor profile.

In the third category, we place the technologies we use to configure the kernel. Currently there are exactly two technologies available: SUID and user namespaces. Both of them are insecure. User namespace has the advantage when things go wrong you can blame it on kernel developers. For Firejail we use SUID.

 

1.2 What is SUID, and how does it affect me?

SUID (Set owner User ID upon execution) is a special type of file permissions. Most programs running on your computer inherit access permissions from the user logged in. SUID allows the program to run as root, rather that the user who started the program.

We use this Linux feature to start the sandbox, since most kernel technologies involved in sandboxing require root access. Once the sandbox is installed, root permissions are dropped, and the real program is started with regular user permissions. For example in the case of a Firefox browser, we start the sandbox as root, drop privileges, then we start the browser as a regular user.

SUID programs are considered dangerous on multiuser systems. It is not a great idea to install Firejail on such systems. If you have a server full of people logging in over SSH, forget about it!

Firejail was built for single-user desktop systems. We try to address desktop specific threats, such as:

  • Mozilla Firefox PDF exploit (2015). You click on a link on a website, and by the time anything shows on the screen, the guys already read various passwords and encryption keys stored in your home directory. Among them, the private SSH keys in ~/.ssh.
  • Google Chrome scanning files in your Documents directory (2018). They say they scan for Windows malware and viruses. It is only a mater of time until this “technology” comes to Linux.

We make the assumption data stored on user’s computer is more valuable then the computer itself. This stands in direct contrast with the corporate/multiuser system philosophy, where the software the company is trying to sell is more important than user’s data. We also assume a clean, updated system without any malicious software already installed.

There are ways to mitigate some of the problems introduced by SUID. Here are some of them:

1. Use firecfg

Integrate your desktop software with Firejail, by running firecfg utility described in Desktop Integration section. As a result, most of your desktop programs will be sandboxed automatically. From inside a sandbox it is not possible to run SUID programs, including Firejail.

2. Set force-nonewprivs flag

If you are not using Chromium or a browser based on Chromium (Opera, etc.) turn on force-nonewprivs flag in /etc/firejail/firejail.config file. As root, open the file in a text editor and add this line:

force-nonewprivs yes

The flag prevents rising privileges after the sandbox was started. It is believed to clean most SUID problems that will ever be attributed to Firejail. Unfortunately, Chromium-based browsers need to rise privileges in order to install their own SUID sandbox.

3. Create a special firejail group

To further restrict the SUID binary, create a firejail group, set /usr/bin/firejail executable as part of this group, change the file mode to 4750, and add only the users allowed to use Firejail to the group. Sample set of instructions on Debian:

$ su
# addgroup firejail
# chown root:firejail /usr/bin/firejail
# chmod 4750 /usr/bin/firejail
# ls -l /usr/bin/firejail
-rwsr-x--- 1 root firejail 1584496 Apr 5 21:53 /usr/bin/firejail

To add the user to the group, type:

# usermod -a -G firejail username

A logout and login back is necessary after adding the user to the group.

4. Consider running the long term support release

The current LTS release was branched out from version 0.9.56 in October 2018. It includes only bugfixes and additional SUID hardening. The code base is much smaller, and easier to audit.

 

2. Usage and Configuration

 

2.1 Installation

Try installing Firejail using your package manager first. Firejail is included in a large number of distributions. Among them Arch, Debian, Gentoo, Mint, Slackware, Ubuntu.

You can find newer versions of the software on our download page. We keep there up to date .deb packages for Debian/Ubuntu/Mint and .rpm packages for CentOS/Fedora/OpenSUSE. You can also download the source archive and compile it yourself. There are no external dependencies, all you need is a C compiler (sudo apt-get install build-essential) and a regular compile/install (./configure && make && make install).

After install run:

$ firecfg --fix-sound

This command fixes some bugs in PulseAudio software versions available on most Linux platforms. After running it, logout and login again for the modifications to take effect.

 

2.2 Basic Usage

Start the sandbox by prefixing your application with “firejail”:

$ firejail firefox
Reading profile /etc/firejail/firefox.profile
Reading profile /etc/firejail/disable-common.inc
Reading profile /etc/firejail/disable-programs.inc
Reading profile /etc/firejail/disable-devel.inc
Reading profile /etc/firejail/whitelist-common.inc
Blacklist violations are logged to syslog
Child process initialized

Any type of GUI programs should work, with sound, video and hardware acceleration support. This makes Firejail ideal for running desktop applications such as web browsers, media players, and games.

 

2.3 Desktop Integration

To integrate Firejail with your desktop environment run:

$ sudo firecfg

As a result:

  • Clicking on desktop manager icons and menus will sandbox the application automatically. We support Cinnamon, KDE, LXDE/LXQT, MATE and XFCE desktop managers, and partially Gnome 3 and Unity. This part works well across all Linux distributions.
  • Clicking on files in your file manager will open the file in a sandboxed application. It works fine in newer Linux distributions like Debian “stretch”, Ubuntu 17.04, Arch, Gentoo.

You can always check if your application was sandboxed by running "firejail --list" in a terminal. Or you can keep a terminal running "firejail --top" to track your sandboxes.

Monitoring sandboxes with “firejail –top”

Some users prefer desktop launchers for stating applications. A launcher is a regular text file with .desktop extension placed in ~/Desktop directory. This is an example for Mozilla Firefox browser:

$ cat ~/Desktop/firefox.desktop
[Desktop Entry]
Type=Application
Name=Firefox
Icon=firefox.png
Exec=firejail firefox
Terminal=false

 

2.4 Security profiles

We distribute Firejail with over 400 security profiles, covering most common Linux applications. Profile files have a friendly syntax, and are stored in /etc/firejail directory.

Profiles build by users should be placed in ~/.config/firejail directory. If you need to add something to an existing profile, use "include" command to bring in the original profile file, then add your commands. For example, this is a profile for a VLC media player without network access:

$ cat ~/.config/firejail/vlc.profile
include /etc/firejail/vlc.profile
net none

For more information see Building Custom Profiles and Building Whitelisted Profiles documents.

 

2.5 Managing Sandboxes

The relevant command line options are as follow:

  • firejail --list – list all running sandboxes
  • firejail --tree – list all running sandboxes and the processes running in each sandbox
  • firejail --top – similar to Linux top command

In case a sandbox is not responding and you need to shut it down, use --shutdown option. First, list the sandboxes,

$ firejail --list
3787:netblue:firejail --private
3860:netblue:firejail firefox
3963:root:firejail /etc/init.d/nginx start
$

and then shutdown the sandbox using the PID number from the list. In this example I shut down Firefox browser:

$ firejail --shutdown=3860

Use --join option if you need to join an already running sandbox and modify the filesystem, the network parameters, or do some other admin work. I am using firefox sandbox from the previous example:

$ firejail --join=3860
Switching to pid 3861, the first child process inside the sandbox

[netblue@debian ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
netblue 1 12.1 4.5 996168 320576 ? Sl 07:33 1:59 firefox
netblue 77 2.5 0.0 20916 3716 pts/2 S 07:49 0:00 /bin/bash
netblue 120 0.0 0.0 16840 1256 pts/2 R+ 07:49 0:00 ps aux

[netblue@debian ~]$

--join works like a regular terminal login in the sandbox. The new shell session inherits all the sandbox restrictions.

 

3. Filesystem

 

3.1 Private Mode

Private mode is a quick way to hide all the files in your home directory from sandboxed programs. Enable it using --private command line option:

$ firejail --private firefox

 

Firejail mounts a temporary tmpfs filesystem on top of /home/user directory. Any files created in this directory will be deleted when you close the sandbox. You can also use an existing directory as home for your sandbox, allowing you to have a persistent home:

$ firejail --private=~/my_private_dir firefox

 

3.2 Chroot

Most of the time I’m happy with the applications distributed by Debian “stable”, but occasionally I need a much newer version of a program or another. In this case, I build a Debian “unstable” chroot on my “stable” system, and run my application using Firejail’s chroot feature. These are the steps:

Step 1: Build a basic Debian sid filesystem:

$ sudo mkdir /chroot
$ sudo debootstrap --arch=amd64 sid /chroot/sid

Step 2: Add a regular user account and install the target application (youtube-dl in this example):

$ sudo firejail --noprofile --chroot=/chroot/sid
# adduser netblue
# apt-get install youtube-dl
# exit

Step 3: Run the application:

$ firejail --chroot=/chroot/sid
$ youtube-dl https://www.youtube.com/watch?v=Yk1HVPOeoTc

The setup also works for GUI programs such as mpv and HandBrake, you just have to bring the programs in:

$ sudo firejail --noprofile --chroot=/chroot/sid
# apt-get update
# apt-get upgrade
# apt-get install handbrake mpv

 

3.3 OverlayFS

One use case for Firejail’s OverlayFS front-end is testing new software packages. All filesystem modifications performed while installing and running the software are stored in overlay layer. The host filesystem is not touched.

This is an example of testing Gnome AisleRiot game from the regular Debian repository. AisleRiot is a collection of over eighty different solitaire card games, including popular variants such as spider, freecell, klondike, thirteen (pyramid), yukon, canfield and many more.

The steps are as follow:

Step 1: Start a root sandbox with a temporary OverlayFS filesystem

$ sudo firejail --noprofile --overlay-tmpfs
#

This is a very relaxed sandbox. All directories are visible, with an overlay on top of them. The only filter installed is seccomp. This means you package manager will not be able to install and load new kernel modules. Also, if you are thinking about installing server programs, it will not work – systemd lives in a different namespace, and it will fail to find your new server.

Step 2: Install the program

# apt-get install aisleriot

Step 3: Switch to your regular user and run the program

# su netblue
$ sol

Playing Klondike (AisleRiot) in a Firejail sandbox

Playing Klondike (AisleRiot) in a Firejail sandbox

 

3.4 AppImage

The previous chroot and OverlayFS tricks will only get you so far. As more and more complex applications are built by thousands of Linux users, new ways of distributing software emerged. My favourite is AppImage.

We introduced AppImage support in 2016, and since then we added more features, bug fixes etc. On their side, AppImage team kept on bringing in new cool stuff, such as a new filesystem layout and a croud-sourced repository of appimages for most Linux applications.

Here is a simple usage example: the latest and greatest Kdenlive video editor built and distributed by the developer.

Kdenlive AppImage running in Firejail

Kdenlive AppImage running in Firejail

I create a private home directory for this application and start the appimage in this directory:

$ mkdir ~/mykdenlive
$ firejail --private=~/mykdenlive --appimage ~/Downloads/Kdenlive-17.12.0d-x86_64.AppImage
Mounting appimage type 2
Reading profile /etc/firejail/default.profile
Reading profile /etc/firejail/disable-common.inc
Reading profile /etc/firejail/disable-passwdmgr.inc
Reading profile /etc/firejail/disable-programs.inc

** Note: you can use --noprofile to disable default.profile **

Parent pid 17670, child pid 17673
Dropping all Linux capabilities and enforcing default seccomp filter
Child process initialized in 60.82 ms
...

All the files I am editing are in ~/mykdenlive directory, no other files in my home are visible in the sandbox. You can find more examples in our AppImage Support document.

 

3.5 AppArmor

Currently, AppArmor Linux security module is enabled by default on Ubuntu. On other distribution you’ll have to enable it yourself. The setup process is very easy, and it can be followed even by Linux beginners. Here are the official instructions for Debian:

$ sudo apt install apparmor apparmor-utils
$ sudo mkdir -p /etc/default/grub.d
$ echo 'GRUB_CMDLINE_LINUX_DEFAULT="$GRUB_CMDLINE_LINUX_DEFAULT apparmor=1 security=apparmor"' \
| sudo tee /etc/default/grub.d/apparmor.cfg
$ sudo update-grub

Long story short, run these commands in a terminal and restart the computer. And these are the instructions for Arch Linux and Gentoo.

Like Firejail, AppArmor restricts programs’ capabilities with per-program profiles. If you have an AppArmor profile for your application, enable it. Firejail should work fine on top of AppArmor. There is some overlap between the two technologies: both of them blacklist the same filesystem. In case one of them misses something important, hopefully the other one picks it up.

If you don’t have an AppArmor profile for your specific application, we give you one. The profile is installed in /etc/apparmor.d/firejail-default file when you install Firejail. You would need to load it into the kernel by running the following command:

$ sudo aa-enforce firejail-default

Note: next time you start your computer, Firejail AppArmor profile will be loaded automatically into the kernel.

Use --apparmor command line option to enable AppArmor confinement inside your sandboxed application:

$ firejail --apparmor warzon2100

In profile files, use apparmor command. This is the previous VLC profile with AppArmor support:

$ cat ~/.config/firejail/vlc.profile
include /etc/firejail/vlc.profile
net none
apparmor

 

3.6 EncFS and SSHFS

EncFS is an encrypted filesystem built on top of FUSE library. It is available on most Linux distributions, and it runs in user space. Integrating EncFS with Firejail brings up an interesting problem. Take a look at this paragraph in man encfs:

By default, all FUSE based filesystems are visible only to the user who mounted them. No other users (including root) can view the filesystem contents.

For various reasons, during sandbox setup Firejail handles EncFS filesystems as root user. FUSE will prevent the root access to user’s files and the sandbox will fail to start.

This problem affects all filesystems based on FUSE library. Quite popular among them is sshfs. The solution is to allow root user to access the filesystem using allow_root FUSE mount flag. On some distributions (Debian & friends) you might have to change FUSE config file in /etc/fuse.conf and uncomment user_allow_other line:

$ cat /etc/fuse.conf
# /etc/fuse.conf - Configuration file for Filesystem in Userspace (FUSE)

# Set the maximum number of FUSE mounts allowed to non-root users.
# The default is 1000.
#mount_max = 1000

# Allow non-root users to specify the allow_other or allow_root mount options.
user_allow_other

This is how to start a Firejail-friendly EncFS:

$ encfs -o allow_root ~/.crypt ~/crypt

And this is a SSHFS:

sshfs -o reconnect,allow_root netblue@192.168.1.25:/home/netblue/work work

After mounting your FUSE filesystem, start your sandboxes the regular way.

 

4. Networking

A network namespace is a new, independent TCP/IP stack attached to the sandbox. The stack has its own routing table, firewall and set of interfaces. Apart from “net none” and an optional “netfilter”, we never configure networking features in the security profiles distributed with the sandbox software.

You can create a network namespace with –net command. There are three setups to choose from:

  • –net=none creates a network namespace unconnected to the real network. The sandbox looks like a computer without any network interfaces.
  • –net=macvlan-device creates a direct network setup. The namespace is connected on the same network as your Ethernet interface using a macvlan kernel device. This is the easiest setup for home users. Unfortunately, the macvlan Linux kernel device works only for wired Ethernet interfaces.
  • –net=bridge-device connects the sandbox to a bridge kernel device. The regular network stack routes the sandbox traffic to your main wired/wireless interface.
 

4.1 Direct Network Setup

Run “ip addr show” to find the name of your wired Ethernet interface (eth0 in my case):

$ ip addr show
1: lo: mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: eth0: mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
link/ether e0:3f:4f:72:14:a9 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.50/24 brd 192.168.1.255 scope global eth0
valid_lft forever preferred_lft forever
inet6 fe80::e23f:49ff:fe7a:1409/64 scope link
valid_lft forever preferred_lft forever

and start the sandbox

$ firejail --net=eth0 firefox

You can specify an IP address (–ip=192.168.1.207), a range of IP addresses (–iprange=192.168.1.100,192.168.1.240) to choose from, or you can let the sandbox find an unused IP address on your network.

Because of the way macvlan kernel drivers are wired to the real Ethernet interface, it is not possible for the sandboxed application to access TCP/IP services running on the host, and the other way around. The sandbox and the host are totally disconnected, even if both of them are on the same network.

Direct network

Direct network

This is a Firefox profile adding network namespace support to the sandbox:

$ cat ~/.config/firejail/firefox-exr.profile
include /etc/firejail/firefox-esr.profile
net eth0
iprange 192.168.1.100,192.168.1.240

Similar, a profile for Transmission:

$ cat ~/.config/firejail/transmission-qt.profile
include /etc/firejail/transmission-qt.profile
net eth0
iprange 192.168.1.100,192.168.1.240

In the examples above, I let Firefox and Transmission fight for address in 192.168.1.100 – 192.168.1.240 range. Actually, all network clients on my home network are fighting for addresses in this range. To monitor the traffic use “firejail –netstats”.

Monitoring network traffic with “firejail –netstats”

 

4.2 Routed Network Setup

In a routed setup sandboxes are connected to a Linux bridge, and the bridge traffic is routed by the host. This setup works for both wired and wireless interfaces. Address translation needs to be enabled on the host in order for the sandbox traffic to go out on Internet:

routednet

Script for setting this up – I assume a wired eth0 interface for the system:

#!/bin/bash

#
# Routed network configuration script
#

# bridge setup
brctl addbr br0
ifconfig br0 10.10.20.1/24 up

# enable ipv4 forwarding
echo "1" > /proc/sys/net/ipv4/ip_forward

# netfilter cleanup
iptables --flush
iptables -t nat -F
iptables -X
iptables -Z
iptables -P INPUT ACCEPT
iptables -P OUTPUT ACCEPT
iptables -P FORWARD ACCEPT

# netfilter network address translation
iptables -t nat -A POSTROUTING -o eth0 -s 10.10.20.0/24 -j MASQUERADE

Starting the sandbox:

$ firejail --net=br0 firefox

For running servers I replace network address translation with port forwarding in the script above:

# host port 80 forwarded to sandbox port 80
iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to 10.10.20.10:80

4.3 Traffic shaping

Network bandwidth is an expensive resource shared among all sandboxes running on a system. Traffic shaping allows the user to increase network performance by controlling the amount of data that flows into and out of sandboxes. Firejail implements a simple rate-limiting shaper based on Linux tc command. The shaper works at sandbox level:

$ firejail --name=browser --net=eth0 firefox &
$ firejail --bandwidth=browser set eth0 80 20

In this example I set a bandwidth of 80 kilobytes per second on receive side and a bandwidth of 20 kilobytes per second on transmit side. As the sandbox is running, I can change the values or even reset them:

$ firejail --bandwidth=browser set eth0 40 10
$ firejail --bandwidth=browser clear eth0

 

5. X11 Sandboxing

If you don’t have Wayland running, the most reliable way to sandbox X11 with Firejail is Xephyr. Xephyr is a light X11 server you can run in parallel with the main xorg server on your machine. The software is part of X.Org.

In this example I use Firejail to sandbox two applications, Inkscape and Firefox, in a the same Xephyr window.

Step 1. Sandbox Xephyr

In order to be able to rearrange and resize windows, I start OpenBox window manager on top of Xephyr. Notice --net=none command option.

$ firejail --x11=xephyr --net=none openbox&

Note: You can replace openbox with any other supported window manager. Currently we support openbox, fluxbox, blackbox, awesome and i3.

As a rule, whenever we are dealing with X11 we also need to install a new network namespace. This is the only way to block access to the abstract Unix socket opened by the main X11 server already running on your box. Every application sandboxed on this display server is required to install a network namespace, either --net=none or --net=eth0.

Step 2. Find the display number for the new server

Each X11 server server running on your box is identified by a unique display number. This number is used to connect X11 applications to a specific X11 server. Run firemon -x11 to find Xephyr’s display number:

$ firemon --x11
2377:netblue::/usr/bin/firejail /usr/bin/Xephyr -ac -br -noreset -screen 1024x
2394:netblue::firejail --net=none openbox
DISPLAY :265

The display number is 265. Notice how Xephyr and OpenBox are running in independent Firejal sandboxes. Let’s start some more sandboxes:

Step 3. Start your applications

$ DISPLAY=:265 firejail --net=eth0 firefox -no-remote &
$ DISPALY=:265 firejail --net=none inkscape &

Independent Inkscape and Firefox sandboxes running in a Xephyr X11 window

Independent Inkscape and Firefox sandboxes running in a Xephyr X11 window

In this moment I have 4 independent sandboxes, one for each program involved: Xephyr, OpenBox, Inkscape and Firefox.

X11 sandboxing using Xephyr

X11 sandboxing using Xephyr

 

6. Servers

As a rule, always use a new network namespace for server sandboxes in order to isolate services such as SSH, X11, DBus running on your workstation. This is an Apache server example:

# firejail --net=eth0 --ip=192.168.1.244 /etc/init.d/apache2 start

The default server profile is /etc/firejail/server.profile. To further restrict your servers, here are some ideas:

# capabilities list for Apache server
caps.keep chown,sys_resource,net_bind_service,setuid,setgid

# capabilities list for nginx server
caps.keep chown,net_bind_service,setgid,setuid

# use a netfilter configuration
netfilter /etc/firejail/webserver.net

# instead of /var/www/html for webpages, use a different directory
bind /server/web1,/var/www/html

You can run thousands of webservers on a regular system, each one with its own IP address, webpages, and applications.

106 thoughts on “Firejail Usage

  1. Pingback: Install and run Zoom Client inside a sandbox ~ Ask Ubuntu ~ QnA World

  2. Pingback: Firejail/Network namespaces without sudo ~ Unix & Linux ~ QnA World

  3. Pingback: How to Getting Started with Firejail on GNU/Linux | tutorialforlinux.com

  4. Pingback: Firejail - безопасный запуск потенциально уязвимых приложений

  5. Rebecca Steinberg

    Hi there! I’m doing a summer research project and I have a general question. Given how complete seccomp filters are, are the namespace filters there to just manage whether a program can access system calls outside their namespace? And also if anyone knows, why would someone want to use capabilities and seccomp filters, if seccomp filters seem so complete? Thanks in advance!

    Like

    Reply
  6. Pingback: [server] wlan0을 eth0에 브리징 - 리뷰나라

  7. catalinux

    hi, i skip ”3. Create a special firejail group” because a get bash: /usr/bin/firejail: Permission denied

    Why?

    Like

    Reply
  8. catalinux

    Hi, i did step 3. Create a special firejail group.
    # addgroup firejail
    # chown root:firejail /usr/bin/firejail
    # chmod 4750 /usr/bin/firejail
    # ls -l /usr/bin/firejail
    -rwsr-x— 1 root firejail 466280 Jun 29 16:09 /usr/bin/firejail
    # usermod -a -G firejail myuser
    and i get this:
    myuser@myhost:~$ firejail
    bash: /usr/bin/firejail: Permission denied

    Like

    Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s